
主讲教师：汪红松

数据结构
（C语言版）（第2版）

绪论

能够分析研究计算机加工的对象的特性，获得其逻辑结构
，根据需求，选择合适存贮结构及其相应的算法；

课程目的

学习一些常用的算法；

程序设计的训练过程，要求编写的程序结构清楚和正确
易读；

了解算法的时间分析和空间分析技术。

熟悉数据结构的一些基本概念

理解算法的概念和特性

01
OPTION

02
OPTION

03
OPTION

教学目标

了解抽象数据类型的表示和实现

了解算法时间复杂度和空间复杂度的分析04
OPTION

教 学 内 容 Contents

老师

有独立含义的数据最小单位，也称域(field)

数据的基本单位，也称结点（node）或记录（record）。

3.数据项（data item）

2.数据元素（data element）

所有能输入到计算机中去的描述客观事物的符号。
u数值性数据
u非数值性数据（多媒体信息处理）

1.数据（data)

u 整数数据对象
 N = { 0, 1, 2, … }
u 学生数据对象

学生记录的集合

4.数据对象(Data Object)：

相同特性数据元素的集合，是数据的一个子集。

5.数据结构（Data Structure）
相互之间存在一种或多种特定关系的数据元素的集合。

“结构”就是指
数据元素之间存
在的关系。

数据结构的两个层次：

逻辑结构 存储结构（物理结构）

数据元素间抽象化的相
互关系，与数据的存储
无关，独立于计算机。

数据元素及其关系在计算机
存储器中的存储方式。

6.逻辑结构

 线性结构——
 有且仅有一个开始和一个终端结点
 ，并 且所有结点都最多只有一个直
 接前趋和一个后继。
 例如：线性表、栈、队列、串

 非线性结构——
 一个结点可能有多个直接前趋和直
 接后继。
 例如：树、图

（2）
OPTION

（1）
OPTION

顺序存储结构

借助元素在存储器
中的相对位置来表
示数据元素间的逻
辑关系。

（1） 链式存储结构

借助指示元素存储
地址的指针表示数
据元素间的逻辑关
系。

（2）

7.存储结构

定义：在一种程序设计语言中，变量所具有的数据种类　

C语言：基本数据类型： char int float double void
　 构造数据类型：数组、结构体、共用体、文件

数据类型是一组性质相同的值的集合, 以及定义于这个集
合上的一组运算的总称。

9.抽象数据类型
 (ADTs: Abstract Data Types)

更高层次的数据抽象。

由用户定义，用以表示应用问题的数据
模型。

由基本的数据类型组成, 并包括一组相关
的操作。

9.抽象数据类型
 (ADTs: Abstract Data Types)

更高层次的数据抽象。

由用户定义，用以表示应用问题的数据
模型。

由基本的数据类型组成, 并包括一组相关
的操作。

 ADT = （D，S，P）

 数据对象 D上的关系集 D上的操作集

ADT抽象数据类型名{

 数据对象：<数据对象的定义>

 数据关系：<数据关系的定义>

 基本操作 ：<基本操作的定义>

 } ADT抽象数据类型名

ADT常用定义格式

9.抽象数据类型

可以通过固有的数据类型（如整型、实型、字符
型等）来表示和实现。

有些类似C语言中的结构（struct)类型，但增加了
相关的操作。

具体实现，如C或C++语言等。

9.抽象数据类型

教 学 内 容

一、

二、

数据结构基本概念和术语

算法的内涵及效率评价

Contents

老师

一个有穷的指令集，
这些指令为解决某一
特定任务规定了一个
运算序列。

算法定义 算法的描述

 自然语言
流程图
程序设计语言
伪码

二、

 （1）算法效率
用依据该算法编制的程序在计算机上执行所消耗的时间来度量

• 事后统计法需要先将算法实现，然后测算其时间和空间开销。
同一个算法用不同的语言、不同的编译程序、在不同的计算机上运

行，效率均不同→使用绝对时间单位衡量算法效率不合适。

• 事前分析估算法，通过计算算法的渐进复杂度来衡量算法的效率
。

二、

算法中基本语句重复执行的次数是问题规模n的某个函数f(n),算
法的时间量度记作：T(n)=O(f(n)) 。

随着n的增大，算法执行的时间的增长率和f(n)的增长率相同，
称渐近时间复杂度。

二、

n * n阶矩阵加法

for(i = 0; i < n; i++)
for(j = 0; j < n; j++)

c[i][j] = a[i][j] + b[i][j];

语句的频度（Frequency Count): 重复执行的次数：n*n;
T(n) = O (n 2)

矩阵加法的运算量和问题的规模n的平方是同一个量级

二、

x = 0; y = 0;
for (int k = 0; k < n; k ++)
 x ++;
for (int i = 0; i < n; i++)
 for (int j = 0; j < n; j++)
 y ++;

Ø 找出语句频度最大的那条语句作为基本语句
Ø 计算基本语句的频度得到问题规模n的某个函数f(n)
Ø 取其数量级用符号“O”表示

f(n)=n2

T(n) = O(n2)

二、

空间复杂度:算法所需存储空间的度量，
记作: S(n)=O(f(n))
其中n为问题的规模(或大小)。

算法要占
据的空间

算法本身要占据的空间
，输入/输出，指令，
常数，变量等

算法要使用
的辅助空间

二、

【算法1】
 for(i=0;i<n/2;i++)
 { t=a[i];
 a[i]=a[n-i-1];
 a[n-i-1]=t;
 }

【算法2】
 for(i=0;i<n;i++)
 b[i]=a[n-i-1];
 for(i=0;i<n;i++)
 a[i]=b[i];

例：将一维数组a中的n个数逆序存放到原数组中。

S(n) = O(n)S(n) = O(1)
原地工作

二、

 1.数据、数据元素、数据项、数据结构等基本概念
 2.对数据结构的两个层次的理解

• 逻辑结构
• 存储结构

 3.抽象数据类型的表示方法
 4.算法、算法的时间复杂度及其分析方法

小结

